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To the editor

Acute vaso-occlusive pain episodes are a hallmark of sickle cell anemia (SCA), one of the 

most common Mendelian disorders worldwide with an estimated >300,000 births 

annually.1–3 Although SCA is a monogenic disorder, manifestations and disease severity are 

highly variable, suggesting additional phenotypic modifiers. The few genetic factors known 

to act as phenotypic modifiers do not completely explain the clinical heterogeneity in SCA. 

Previous genetic association studies identified that variants at 3 distinct loci (BCL11A, 

HBS1L-MYB, and HBB) are strong determinants of fetal hemoglobin level, and single 

nucleotide polymorphism (SNP) variant rs6141803 located upstream of COMMD7 is 

associated with acute chest syndrome.4 Also, heme-oxygenase-1 gene (HMOX-1) promoter 

polymorphisms influence heme oxygenase (HO-1) activity and incidence of acute chest 
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syndrome in children with sickle cell disease (SCD).5,6 We conducted this genome wide 

association study (GWAS) to identify variants associated with acute severe vaso-occlusive 

pain in children with SCA enrolled in the Cooperative Study for Sickle Cell Disease 

(CSSCD) and Silent Infarct Transfusion (SIT) trial. The CSSCD, a multi-institutional 

prospective cohort natural history study of SCD, enrolled 3,538 individuals with SCD 

between 1979 and 1981.7 The SIT Trial, a multi-center international trial, screened 1,210 

children with SCA to test the hypothesis that regular blood transfusions attenuate 

progression of cerebral infarcts in children with pre-existing silent strokes.8 Both studies 

were approved by the Institutional Review Boards at Boston University School of Medicine 

and Vanderbilt University Medical Center.

We included participants identified as being of African descent from both cohorts, with 

available genotype data, and diagnosed with SCA. We excluded participants if essential 

clinical or demographic data (necessary for phenotypic assignment or previously reported to 

impact the pain phenotype) was missing, or if there was discordance between genetically 

defined and self-identified sex. We excluded all self-reported first-degree relatives, and 

cryptic relatedness (including full siblings, parents, offspring) determined by examining 

pairwise identity-by-descent in the combined cohort. To harmonize pain phenotypes in the 

CSSCD and SIT Trial cohorts, age inclusion criteria of 2 to 18 years was used to match the 

age and length of follow-up in both cohorts. SIT trial participants were between 5 and 15 

years of age at the time of registration and included a 3-year retrospective collection of all 

acute severe vaso-occlusive pain based on hospitalization and treatment with opioid 

medication.10 Unlike previous CSSCD pain analyses, where the definition of a pain episode 

included an acute vaso-occlusive event that lasted at least two hours and resulted in a 

physician visit,9 we restricted the definition of a pain episode to include only episodes 

requiring hospitalization, to match the SIT trial definition.

CSSCD cohort DNA samples were genotyped at Boston University School of Medicine 

using Illumina Human610-Quad arrays (n=610,000 SNPs) (Illumina, San Diego, CA, USA) 

and BeadStudio was used to call genotypes. SIT trial samples were genotyped at Center for 

Inherited Disease Research (CIDR) at Johns Hopkins University School of Medicine 

(N=573) using the Illumina HumanHap650Y array (n=661,000 SNPs) (Illumina Inc., San 

Diego CA, USA) or at the Center for Disease Control, Atlanta, GA, USA (N=509) using the 

Illumina Infinium HumanOmni1-Quad array (n=1,134,514 SNPs) (Illumina Inc., San Diego 

CA, USA). After detailed quality control (QC) procedures (and excluding CSSCD samples 

outside the SIT Trial age inclusion criteria (≥2 and ≤12 years), 359 and 934 samples from 

the CSSCD and SIT cohorts, respectively, were included in the analysis (Table 1, 

Supplemental Figures S1A and S1B, Supplemental methods). To infer un-genotyped SNPs 

and fill in missing data across genotyping platforms in the SIT trial and CSSCD cohort, we 

merged HumanHap650Y, HumanOmni1-Quad and Human610-Quad array datasets and 

performed imputation for autosomal markers using a Hidden Markov model as implemented 

in MaCH, version 1.16,10 with 50 rounds and 200 states. QC was performed both before and 

after imputation and poorly imputed SNPs (Rsq <0.3, squared correlation between imputed 

and true genotypes) were excluded; a total of 1,098,907 SNPs remained for analysis. Due to 

the observed over-dispersion of pain episodes in both cohorts, a multivariate quasi-Poisson 

regression model with correction for estimated over-dispersion, was used to evaluate 
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possible associations between SNPs and acute vaso-occlusive pain rate, treated as a 

quantitative trait. The model was adjusted for age at enrollment, sex, hematocrit, and the top 

10 principal components from the genetic data (to account for population substructure and 

genetic heterogeneity), assuming additive effects of allele dosage on acute vaso-occlusive 

pain rate.

Participant characteristics for the SIT trial and CSSCD cohort are shown in Table 1. 

Statistically significant, but not clinically relevant, differences were identified between the 

two cohorts in age, percentage of fetal hemoglobin, reticulocyte percentage, pain rate, and 

follow-up time. The Manhattan plot summarizing the results of GWAS for acute vaso-

occlusive pain in the SIT trial and CSSCD cohort for the additive model is shown in Figure 

1. The genomic inflation lambda coefficient was 1.079, suggesting minimal test statistic 

inflation by potential population stratification, cryptic relatedness, or other technical factors. 

While none of the SNPs were significant at P <5.0 × 10−8, one novel locus approached 

genome-wide significance: SNP rs3115229 (P = 5.63 × 10−8). This SNP is located 63.7 kb 

5′ upstream of the KIAA1109 gene on chromosome 4 (4q27).

The suggested locus includes the KIAA1109-TENR-IL2-IL21 linkage disequilibrium block, 

containing three known protein-coding genes, TENR, IL2, IL21, and a predicted gene of 

unknown function, KIAA1109. This locus has been associated with auto-inflammatory 

disorders such as celiac disease,11,12 ulcerative colitis,13,14 and rheumatoid arthritis.15,16 

Given the nature of GWAS studies, namely associations between a SNP and a phenotype, we 

can only postulate as to the potential role of this locus in the pathogenesis of acute vaso-

occlusive pain, a complex phenomenon involving tissue ischemia, hypoxia-reperfusion 

injury, immune responses and inflammation,17,18 and interactions between red blood cells, 

endothelium, and leukocytes regulated by regulated by T-cell cytokines and adhesion 

molecules.19,20 Interleukin-2 (IL-2) and interleukin-21 (IL-21) may modulate acute pain in 

SCD through their effects on inflammation and immune responses. IL-2 is a key cytokine for 

T-cell activation and proliferation.21 IL-21 enhances B, T and natural killer cell proliferation 

and interferon-γ production; inhibiting IL-21 has been shown to dampen inflammatory 

responses.22,23 T lymphocytes have also been implicated as mediators of pain 

hypersensitivity.24 KIAA1109 is moderately expressed in all adult and fetal tissues and 

encodes a protein of unknown function.25 TENR encodes testis nuclear RNA-binding 

protein, expressed primarily in the testis.

Strengths of the study include the consistent definition of acute severe vaso-occlusive pain 

requiring hospitalization, the relatively large sample size from two independent cohorts of 

children with fewer co-morbidities, and lower rates of chronic pain than adults with SCA. 

Pooling the cohorts improved power for our discovery analysis, but precluded validation in a 

separate cohort.

In summary, we present preliminary evidence of an association between variant rs3115229 

and acute severe vaso-occlusive pain in children with SCA. Our results will require 

additional validation and functional studies to understand the biology and reveal 

mechanisms by which candidate SNPs/genes might have their effects.
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Figure 1. Manhattan plot showing the genome-wide −log10 P values for association of SNPS with 
vaso-occlusive pain
Only one SNP on chromosome 4 (rs3115229) approached genome wide significance (P = 

5.63×10−8).
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Table 1

Summary of SIT and CSSCD cohort demographics and clinical characteristics

Characteristic CSSCD* (n=349) SIT trial† (n=934) P-value‡

Male sex, n (%) 195 (54.3) 489 (52.3) 0.53

Age (in years), mean ± SD 6.92 ± 2.78 8.96 ± 2.44 <0.001

Follow-up (in years), mean ± SD 2.8 ± 0.67 3.00 ± 0.0 <0.001

Acute severe vaso-occlusive pain# rate (events/patient year) 0.58±1.02 0.61 ± 0.83 0.01

ACS rate (events/patient year) 0.18 ± 0.41 0.13 ± 0.26 0.14

Hematocrit (%), mean ± SD 23.10 ± 2.81 23.35 ± 3.43 0.47

Hemoglobin (g/dl), mean ± SD 7.98 ± 0.88 8.12 ± 1.08 0.15

Fetal Hemoglobin (%), mean ± SD 7.59 ± 4.87 8.94 ± 5.75 0.001

Reticulocytes (%), mean ± SD 13.99 ± 5.62 12.02 ± 5.48 <0.001

White Blood Cells, 109/L 12.38 ± 2.71 12.58 ± 5.26 0.68

*
Age range at enrollment was 2–12 years; pain/ACS events were defined as those occurring 3 years prospectively; therefore, the age range in which 

they developed pain is 2–15 yrs.

†
Age range was 2–15 years at enrollment; pain/ACS events were defined as those occurring 3 years retrospectively; the youngest patient enrolled is 

5 years of age

‡
P-values for continuous and categorical variables are based on Wilcoxon rank sum test (with continuity correction) and Pearson chi-square test, 

respectively.

#
Acute severe vaso-occlusive pain was defined as an acute episode of pain requiring hospitalization and treatment with opioids.
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